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Rearing thermal conditions modulate
the feeding attributes of Zygogramma bicolorata Pallister
(Coleoptera, Chrysomelidae)

Lankesh Yashwant Bhaisare and Desh Deepak Chaudhary*

Behavioral and Molecular Ecology and Biocontrol Research Laboratory, Department of Zoology,
Indira Gandhi National Tribal University, Amarkantak 484887, Madhya Pradesh, India
Email: ddchaudhary90@gmail.com

ABSTRACT: Effects of temperature on the different parameters of consumption and utilization of food,
such as consumption index, conversion of ingested food, absolute digestibility, conversion of digested
food and growth rate were investigated by rearing Zygogramma bicolorata Pallister at 15°C, 20°C, 25°C,
30°C and 35°C. Death of different life stages, including under-developed adults occurred at 15 and 35°C.
Maximum consumption index during the feeding period was observed at 25°C, whereas it was minimum at
30°C. The results revealed that conversion of ingested food was maximum at 20°C and minimum at 25°C.
In addition, the conversion of digested food was maximum at 20°C and minimum at 25°C. However,
absolute digestibility and relative growth rate increased with increasing temperature from 20 to 30°C.
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INTRODUCTION

Like all organisms, insects require an energy balance
crucial for their growth, development, reproduction,
and survival, depending on the equilibrium between
energy acquisition and expenditure in physiological
processes (Klepsatel et al., 2019). Energy stored
as food reserves determine insect’s survival in
adverse conditions (Rion and Kawecki, 2007).
Insects serves as vital energy transformer, as they
are integral components of ecosystems. In terrestrial
ecosystems, insect herbivores significantly influence
plant biomass (Carson and Root, 2000), species
diversity (Bagchi et al., 2014), competition
dynamics (Kim et al., 2013), and nutrient cycling
(Metcalf et al., 2014). As insects are ectothermic,

their physiological processes are directly tied to
environmental temperature (Fields, 2001). In the
last century, Earth’s average temperature increased
by 1°C and is expected to rise by 0.2°C per decade
(Marshall et al., 2020). Studies indicate that
temperature significantly influences various aspects
of insect such as dispersal, foraging, species
interaction (Afaq, 2012; Soga and Gaston, 2018),
courtship signaling, mating frequency, species
recognition (Larson et al., 2019), movement,
recolonization (Fletcher et al., 2018), development,
predation, herbivory (McMunn et al., 2019; Owens
et al., 2020), initiation, and termination of diapause
(Dalin et al., 2010; Tougeron et al., 2020), as well
as population growth rate (Miles et al., 2019;
Murphy et al., 2020). Additionally, temperature
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plays a role in modulating chemically mediated
signals, phenology, life history (Gallinat et al., 2015;
Ekholm et al., 2019; Marshall et al., 2020), and
changes in voltinism (Van Dyck et al., 2015; Forrest
et al., 2019; Kerr et al., 2020) in various insect
species.

Zygogramma bicolorata Pallister (Coleoptera,
Chrysomelidae) is an effective biological control
agent for Parthenium hysterophorus L.
(Asteraceae), an invasive herbaceous weed with
a pan-tropical distribution. The weed affects grass
productivity and endemic biological diversity and
causes different medical symptoms in humans
(Patel, 2011; Jayaramiah et al., 2017). From a
biological control perspective, the thermal
performance of mass-reared insects facing novel
environments upon release in the wild has long been
a source of unease (Enserink, 2007; Terblanche
and Chown, 2007; Chidawanyika and Terblanche,
2011; Sørensen et al., 2013; Terblanche, 2014).
Several studies have argued that mass-reared
insects, typically kept under constant optimal
environments, may struggle under field conditions
(Enserink, 2007; Kristensen et al., 2008;
Chidawanyika and Terblanche, 2011). Therefore,
it is imperative to understand the physiological
responses to thermal variation in insects used in
biological control. It may help optimize rearing and
release protocols to enhance field performance
(Terblanche, 2014).

Although, studies on consumption and utilization of
food by Z. bicolorata have been studied by
Bhumannavar and Balasubramanian (1998) and
Omkar and Afaq (2011) but very few studies have
shown the effect of temperature on the feeding
efficiency (Afaq, 2012), development and survival
(Omkar et al., 2008), mate guarding behaviour
(Bhaisare and Chaudhary, 2023), plant mediated
effects of temperature and CO2 on biocontrol
(Kumar et al., 2021), effect of temperature and
altitude on feeding attributes (Bhusal et al., 2020),
and heat tolerance (Chidawanyika et al., 2017) of
Z. bicolorata. Nevertheless, the effect of various
rearing thermal conditions on the feeding
parameters of Z. bicolorata have not been
investigated so far. In the present study, investigated

the effects of various thermal conditions on the
feeding attributes of Z. bicolorata, i.e.,
consumption index, conversion efficiency,
digestibility, and growth rate.

MATERIALS  AND  METHODS

Both sexes of Z. bicolorata adults were collected
from agricultural fields of Amarkantak (22° 40’N,
81° 45’E), Madhya Pradesh, India. The adults were
paired randomly in plastic Petri dishes (9.0×1.5cm)
and allowed to mate until natural disengagement
and reared under controlled abiotic conditions (i.e.
temperature: 25±2°C; humidity: 65±5%;
photoperiod: 14L:10D) in BOD incubators (REMI
CHM-16 Plus). Beetles were provided with fresh
leaves of P. hysterophorus daily. Eggs laid were
collected daily and used for further experimentation.

Batches of (100 eggs per temperature) eggs were
collected from the stock and reared till adult maturity
at constant temperatures of 15, 20, 25, 30 and 35°C
separately at each temperature regime in the BOD
incubator with the same abiotic conditions (humidity
65±5%; photoperiod 14L:10D). Afterward, pre-
weighed (Digital weighing balance Model: Aczet-
CY223C) adult females were kept with pre-
weighed leaves for 24 hours under respective
thermal conditions. After 24 hours, the adult was
transferred to a fresh Petri dish, concurrently, the
adult biomass, the weight of faeces, and remaining
unfed Parthenium leaves were recorded.  Each
experiment was replicated ten times and the
consumption rate, conversion of ingested food,
digestibility, conversion of digested food, and growth
rate of the adults at different reared thermal
conditions were calculated (Waldbauer, 1968).

Consumption index is the consumption made based
on the intake rate relative to the animal’s mean
weight during the feeding period and was calculated
as:=

Conversion of ingested food is the efficiency of
conversion of ingested food to body substance and
was calculated as = 
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Digestibility was calculated as =
 

Conversion of digested food is the efficiency with
which digested food is converted to body substance
and was calculated as:  =

 

Growth rate =
 

The data collected on consumption index, conversion
of ingested food, absolute digestibility, conversion
of digested food, and growth rate were checked
for normality with the help of Kolmogorov-
Smirnov’s test, which revealed normal distribution.
Data were subjected to one-way ANOVA followed
by Tukey’s post hoc honest test of significance. All
statistical analyses were done using MINITAB-16
statistical software (Minitab Inc., State College,
Pennsylvania, USA).

RESULTS  AND  DISCUSSION

At the extreme thermal conditions (15 and 35°C),
the death of different immature stages (larvae,
pupae and under-develop adults) was observed
(Table 1). On the other hand, thermal conditions
(20, 25 and 30°C) significantly influenced the
consumption index (P=0.040, F=68.47, df=2),
conversion of ingested food (P=0.004, F=6.16,
df=2), absolute digestability (P=0.002, F=10.38,
df=2), conversion of digested food (P=0.025,
F=3.96, df=2), and growth rate (P=0.012, F=5.28,
df=2). The maximum consumption index
(41.28±3.54 mg) was observed at 25°C whereas it
was minimum (0.02±0.00 mg) at 30°C (Fig. 1). The
conversion of ingested food was maximum
(17.52±6.23 mg) at 20°C whereas it was minimum
(2.46±1.45 mg) at 25°C (Fig. 2). The conversion
of digested food was maximum (41.16±23.29 mg)
at 20°C and it was minimum (2.93±1.68 mg) at
25°C (Fig. 4). However, absolute digestibility and
growth rate increased with increasing temperature
from 20 to 30°C (Figs. 3, 5). In the present study,

extreme thermal conditions (15 and 35°C) were
not tolerated by the larval and pupal stages and
newly emerged adults, leading to death at the
immature stages. The intolerance of thermal shock
may be because there was a decrease in the number
of obligate bacterial endosymbionts, which are
responsible for the thermal tolerance of insect host
species (Zhang et al., 2019). Experimental beetles
were collected from a geographical area where
temperature ranged from 15°C to 30°C with an
average of 20 ± 2°C throughout the year (Malviya
and Dwivedi, 2015). So, the beetle might have
adopted this temperature range through epigenetic
changes. Temperature is one of the factors for
changes in the genome at the epigenetic level
(Richard et al., 2019). The physiology and
biochemical activities of the beetles are adversely
affected by either a range of positive or negative
temperature variations.

Consumption index increased from 20°C to 25°C
and then decreased at 30°C. This might be because
the energy available for activities other than cellular
maintenance, such as movement, feeding, or
digestion, drops rapidly at high temperatures. This
often lead to lower consumption rates at high
temperatures (Somero, 2011). Levesque et al.
(2002) reported a similar pattern of the consumption
index in Malacosoma disstria. Apart from this,
Lemoine et al. (2014) investigated the relationship
between food consumption and temperature in
phytophagous insects which revealed that food

Fig. 1 Effects of temperature on consumption index
(Values are Mean± SE; Small letters represent the
comparisons of mean between the treatments; Similar
letters indicate lack of significant difference)
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intake increased as temperature increased up to a
certain range. Many studies reported that
consumption rates of insects increase to a certain
extent with increasing temperature, and after that,
the consumption rates vary according to the
fluctuation of the temperature (Niu et al., 2003;
Yee and Murray, 2004; Rall et al., 2010).

Maximum conversion efficiency was recorded at
20°C than other thermal conditions. Several studies
also suggested that with increasing temperature,
the food conversion efficiency of adults initially
increased to an optimal level and then decreased
with a further increase in temperature (Bhusal et
al., 2020). The findings of the present study suggest
that 20°C might be the optimal temperature for this
beetle. However, temperatures above the optimal
levels might induce thermal stress reducing its

conversion efficiencies. Similar trends also have
been reported in coccinellid beetles (Omkar and
Kumar, 2016).

Absolute digestibility increased positively from 20°C
to 30°C. This increase in digestibility with
temperature might be because of the increase in
the metabolic rate of Z. bicolorata. Similar results
have been documented by Levesque et al. (2002)
and Hegazi and Schopf (2009) in Malacosoma
disstria and Spodoptera littoralis (Boisd.). In
contrast, the conversion of digested food was
maximum at 20°C and minimum at 25°C. At 20°C,
the beetle might have efficiently converted the food
into nutrients needed for physiological functioning.
The above finding suggest that this temperature
might be optimal for feeding and converting food
material. Similar results have also been recorded
in the forest tent caterpillar moth and African cotton
leafworm (Hegazi and Schopf, 2009; Levesque et
al., 2002).

Growth rate was negligible at 20°C, but increased
in temperature 25°C to 30°C, suggesting that the
metabolic rates of Z. bicolorata adults increased
with the temperature which might have stimulated
the growth of the beetles. A similar trend has also
been reported in the beetle, Alphitobius diaperinus,
which grew slower at low temperature and faster
at high temperature (Bjorge et al., 2018).

In conclusion, the results of the present study
suggest that temperature significantly modulated this

Fig. 3 Effect of temperature on absolute digestibility
(Values are Mean± SE; Small letters represent the
comparisons of mean between the treatments; Similar
letters indicate lack of significant difference)

Fig. 2 Effect of temperature on conversion of ingested
food (Values are Mean± SE; Small letters represent the
comparisons of mean between the treatments; Similar
letters indicate lack of significant difference)

Fig. 5 Effects of different thermal conditions on relative
growth rate (Values are Mean± SE; Small letters
represent the comparisons of mean between the
treatments; Similar letters indicate lack of significant
difference
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