Selection of best performing Apis cerana indica Fab. colonies for stock improvement based on comparison of economic characters

K.K. Shailaja ${ }^{* 1}$, D. S. Jones ${ }^{1}$ and S. Devanesan ${ }^{2}$
${ }^{1}$ Department of Zoology, Scott Christian College, M.S. University, Nagercoil 629 003, Tamil Nadu, India. Email: kkstvm@gmail.com
${ }^{2}$ Department of Entomology, College of Agriculture, Kerala Agricultural University, Vellayani 695522, Kerala, India

Abstract

The comparative performance on economic characters of Indian bee Apis cerana indica Fab. collected from 18 locations of different beekeeping pockets in Kerala were studied during 2012-2013 to find out better performing colonies for selective breeding. The bee colonies collected from highland location Rajakkat (L3) and Rosemala (L6) were black morph and midland location Pathanapuram (L11) and lowland location Kadakkal (L18) were yellow morph and bees from other locations were common brown bees. The black and yellow morphs of A. cerana indica are being reported from Kerala for the first time. The black and yellow bee colonies recorded significantly higher mean bee strength, brood area, pollen storage area, honey storage area and honey yield compared to common brown bees. Both black and yellow bee morphs had more tolerance/ immunity against diseases compared to common bees. Absconding behavior was more in black bees while it was not recorded in yellow bees. These black and yellow bee colonies can be utilized for stock improvement through selective breeding for enhanced honey production. (C) 2015 Association for Advancement of Entomology

KEY WORDS: Apis cerana indica, black morph, yellow morph, comparative performance, brood area, pollen storage area, honey yield

INTRODUCTION

The honey bee, Apis cerana indica is the predominant bee species widely used for commercial beekeeping in Kerala. Even though the industry had progressed recently, honey production is not upto the desired level due to lack of colonies /strains with desirable traits. Verma (1994)

* Author for correspondence
pointed out that a solution for low honey production, diseases, swarming and absconding characters of the species has to be worked out for sustainable apiculture with Indian bee. According to Chhuneja (2006 a,b), the only method for achieving the target will be stock improvement of the Indian bee A. c. indica by identifying the best genetic material from already available stocks, segregate promising colonies/queen bees on the basis of important economic and behavioural parameters and subsequently adopting inter-breeding through different mating combinations, avoiding any inbreeding.

Although beekeeping is a common practice in Kerala, studies on honey bee productivity or stock improvement of A. cerana indica is lacking. Hence an attempt was made to identify Indian bee colonies with better viable characters from among the existing bee colonies in Kerala.

MATERIALS AND METHODS

Eighteen locations from three natural topographic divisions of Kerala viz., Highland (750 1700 m above MSL), Midland (100-750 m above MSL) and Lowland ($25-100 \mathrm{~m}$ above MSL) (Table 1) were selected for the present study.
A. cerana indica colonies were selected from the apiaries of bee breeders / progressive beekeepers in locations mentioned in Table 1. Selection of colonies was done by checking colony registers maintained by the beekeepers with data on the performance and honey yield of the colonies in the previous years and also by visual observation of the colonies. Colonies with newly mated queen, six combs and approximately same bee strength (three frames) were selected. Three such colonies were collected from each location, marked and were brought to an apiary at Kadakkal, Kollam district. The colonies were kept strong and healthy, under same condition, by adopting the management practices recommended by the Kerala Agricultural University POP (Package of Practices).

Comparative performances on the economic characters (bee strength, brood area, pollen storage area, honey storage area and honey yield) were recorded from August 2012 to July 2013. Observations were recorded at 15 day intervals. Bee strength was assessed by counting comb well covered with bees on the two sides as one (Taha, 2007). The brood area, pollen storage area and honey storage area were recorded using a grid, which consist of a number of squares each measuring one square centimeter in area. The cells with brood / pollen/honey scattered in a comb was counted separately and converted into square cetimeters (Verma, 1998). Honey from the super chambers was extracted at intervals of eight days and weighed. Disease incidence was recorded through visual observation at fortnightly intervals. Number of colonies absconded were recorded at 15 day intervals. The data obtained were subjected to analysis of variance.

Table 1. Locations selected for collection of Apis cerana indica colonies

Topographical division	Agroclimatic zone	Location code	Location (District)	Altitude M) Above MSL	Longitude ($\left.{ }^{\circ} \mathrm{E}\right)$	Latitude $\left({ }^{\circ} \mathrm{N}\right)$
Highland	Northern	L1	Sulthan Bethery (Wayanad)	1000	$76^{\circ} .2990$	$11^{\circ} .72127$
	Central	L2	Panathady (Kasaragod)	750	$75^{\circ} .1302$	$12^{\circ} .21327$
		L3	Rajakat (Idukki)	1700	$77^{\circ} .0667$	$10^{\circ} .1213$
		L4	Adimali (Idukki)	1100	$76^{\circ} .9561$	$10^{\circ} .0148$
	Southern	L5	Amboori (Trivandum)	980	$77^{\circ} .8223$	$8^{\circ} .5025$
		L6	Rosemala (Kollam)	1100	$77^{\circ} .1431$	$8^{\circ} .9667$
Midland	Northern	L7	Peravoor (Kannur)	125	78.8256	$9^{\circ} .6729$
		L8	Thamarassery (Kozhikode)	722	$75^{\circ} .3411$	$11^{\circ} .4912$
	Central	L9	Palakkad (Palakkad)	467	$76^{\circ} .3911$	$10^{\circ} .4625$
		L10	Mundakayam (Kottayam)	330	$76^{\circ} .8833$	$9^{\circ} .5500$
	Southern	L11	Pathanapuram (Kollam)	120	$76^{\circ} .8882$	$9^{\circ} .1086$
		L12	Nedumangadu (Trivandrum)	223	$77^{\circ} .0012$	$8^{\circ} .3560$
Lowland	Northern	L13	Ulikkal (Kannur)	25	$75^{\circ} .3900$	$12^{\circ} .2031$
		L14	Parappa (Kasaragod)	38	$75^{\circ} .2254$	$12^{\circ} .3617$
	Central	L15	Cheruthuruthi (Thrissur)	49	$76^{\circ} .2733$	$10^{\circ} .7433$
		L16	Perumbavoor (Ernakulam)	33	$76^{\circ} .4784$	$10^{\circ} .1211$
	Southern	L17	Neyyattinkara (Trivandrum)	75	$77^{\circ} .0833$	$8^{\circ} .4240$
		L18	Kadakkal (Kollam)	75	$76^{\circ} .9137$	$8^{\circ} .8316$

RESULTS

Comparative performance of A. cerana indica colonies from different locations

Two distinct colour morphs of A. cerana indica could be observed from certain beekeeping pockets in the present study, in addition to the common brown bees, Bees from L3 and L6 were black morphs, those from L11 and L18 were yellow morphs and bees from other locations were common brown bees. The colour of the queen and workers was differing compared to common brown bees. In black bees the abdomen of the queen was very black and that of yellow bees was yellowish brown and in common brown bees it was dark brown. The colour of the abdomen of worker bees were also very distinctive (Fig. 1,2,3).

a. Bee strength (No. of bee frames)

Data on bee strength of colonies from different locations are shown in Table 2. Mean bee
Table 2．Monthly variation in bee strength（No．of frames with bees on both sides）of Apis cerana indica

		$\stackrel{\theta}{\circ}$		$\begin{aligned} & \underset{O}{\mathrm{O}} \end{aligned}$			¢	$\underset{\sim}{\infty}$	N゙	\cdots	¢		$\stackrel{\sim}{\sim}$	\bigcirc	
E		$\underset{子}{\underset{子}{7}}$	$\begin{array}{lc} \stackrel{\infty}{\infty} \\ \underset{\sim}{\circ} \\ \underset{\sim}{0} \\ \hline \end{array}$	$\stackrel{\infty}{+}$		$\underset{\substack{\circ \\ i \\ i}}{ }$	\cdots	$\frac{n}{7}$	$\stackrel{n}{7}$	$\stackrel{n}{\sim}$	\％	$\stackrel{\otimes}{+}$	ヲ	$\stackrel{\sim}{c}$	
主		$\stackrel{\mathscr{\infty}}{\stackrel{\infty}{7}}$		$\stackrel{7}{7}$	ぶ入	¢	$\frac{\underset{\sim}{1}}{\substack{2}}$	त゙	$\stackrel{\rightharpoonup}{\infty} \underset{\substack{\infty \\ i}}{ }$	＋	$\xrightarrow{\text { ¢ }}$	$\stackrel{\text { ¢ }}{+}$	$\stackrel{\substack{*}}{7}$	－	N
亮		$\underset{\sim}{\stackrel{P}{\odot}}$	$\begin{array}{cc} \sim \\ \underset{\sim}{c} & \stackrel{\infty}{\star} \\ \underset{\sim}{n} \end{array}$	$\stackrel{\otimes}{\underset{\sim}{\circ}}$	$\underset{\substack{\circ \\ \underset{\sim}{i} \\ \hline}}{ }$	$\begin{aligned} & \hat{\infty} \\ & \stackrel{\rightharpoonup}{c} \end{aligned}$	$\begin{aligned} & \mathfrak{N} \\ & \underset{\sim}{n} \end{aligned}$	$\stackrel{\ominus}{\stackrel{n}{7}}$	$\begin{aligned} & \text { of } \\ & \text { i } \end{aligned}$	$\begin{aligned} & \hat{8} \\ & \underset{\gamma}{2} \end{aligned}$	$\stackrel{\circ}{7}$		\％	N	$\stackrel{i}{2}$
$\frac{\ddot{\partial}}{4}$	$$	隼	$\stackrel{n}{n} \stackrel{o}{\sim}$	子	$\underset{\sim}{\text { c }}$	$\underset{子}{8}$	$\stackrel{n}{n}$	is	$\stackrel{\text { N }}{\text { N }}$	$\stackrel{\sim}{\text { N}}$		子	$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$	m	
$\sum_{i}^{\text {苛 }}$	$\begin{aligned} & \text { N } \\ & \text { N } \\ & \text { ci } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{O}{\mathrm{O}} \end{aligned}$	$$		$\stackrel{\rightharpoonup}{\text { ci }}$	$\frac{\underset{N}{i}}{\frac{D}{2}}$	$\begin{aligned} & \text { O} \\ & \stackrel{\text { ® }}{1} \end{aligned}$	तु	¢	$\stackrel{7}{6}$	8 i i	$\stackrel{n}{\sim}$		$\stackrel{\text { ¢ }}{\text { ¢ }}$	
0i		$\stackrel{\curvearrowleft}{\infty}$				$\frac{N}{n}$	$\underset{\sim}{N}$	$\begin{aligned} & \infty \\ & \hat{R} \end{aligned}$	$\underset{\sim}{\underset{\sim}{7}} \underset{\sim}{\underset{\sim}{2}}$	$\stackrel{\infty}{\stackrel{\infty}{6}}$	$\begin{gathered} \varkappa \\ \stackrel{i}{*} \end{gathered}$	$\stackrel{\infty}{\stackrel{+}{+}}$	$\stackrel{\hat{c}}{\stackrel{y}{2}}$		n $\substack{2 \\ \infty \\ i \\ i}$
皆		$\stackrel{\text { g }}{寸}$	$\stackrel{n}{\mathrm{~N}} \underset{\sim}{\mathrm{~N}}$		$\stackrel{\because}{m}$	$\stackrel{\sim}{子}$	$\begin{aligned} & \stackrel{O}{\ddagger} \\ & \underset{\sim}{7} \end{aligned}$	$\stackrel{\infty}{\infty}$	તi	$\underset{子}{\underset{子}{*}}$	$\stackrel{\infty}{\infty}$	$\stackrel{\text { ¢ }}{+}$	$\xrightarrow{\text { O }}$	c	
نٌ		$\stackrel{\rightharpoonup}{\mathrm{m}}$			$\begin{aligned} & \text { d } \\ & \text { i } \end{aligned}$	$\stackrel{\kappa}{n}$	$\stackrel{n}{n}$	$\underset{子}{\overrightarrow{2}}$	$\begin{aligned} & \vec{\sim} \\ & \underset{\sim}{n} \end{aligned}$	$\stackrel{O}{\mathrm{~N}}$		\cdots	$\stackrel{\text { coid }}{ }$	m	$\stackrel{\infty}{\infty} \stackrel{\text { ¢ }}{\sim}$
$\frac{2}{8}$		$\stackrel{\substack{n}}{i n}$	$\begin{array}{lc} \vec{y} \\ \underset{\sim}{n} \\ \end{array}$	$\stackrel{\rightharpoonup}{n}$		$\begin{aligned} & \underset{\infty}{\infty} \\ & \dot{i} \end{aligned}$		fo	$\begin{aligned} & \text { d } \\ & \text { 子 } \end{aligned}$	$\begin{aligned} & \pm \\ & \stackrel{y}{6} \\ & i \end{aligned}$	$\begin{aligned} & \stackrel{0}{n} \\ & i n \end{aligned}$	$\stackrel{+}{6}$	$\begin{aligned} & 0 \\ & i n \\ & i n \end{aligned}$		
$\stackrel{\rightharpoonup}{0}$		$\stackrel{\rightharpoonup}{2}$		$\underset{\sim}{\forall}$	$\stackrel{\infty}{\infty}$	$\stackrel{M}{n}$	$\underset{\text { ন }}{\underset{\sim}{2}}$	n	$\begin{aligned} & \mathcal{O} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \text { \% } \\ & + \\ & \hline \end{aligned}$	$\stackrel{\infty}{\infty}$	$\stackrel{+}{+}$	$\stackrel{\sim}{6}$	華	－
$\begin{aligned} & \dot{\ddot{\circ}} \\ & \dot{\sim} \end{aligned}$		$\frac{8}{m}$	$\begin{array}{cc} n & \cdots \\ \cdots & \stackrel{n}{m} \\ m \end{array}$	$\frac{0}{m}$		$\underset{\sim}{\circ}$	$\underset{\sim}{\infty}$	M	స্লি	N్ల	$\frac{\infty}{\cdots}$	$\stackrel{\rightharpoonup}{\mathrm{m}}$	$\underset{\text { Nu}}{n}$		\cdots
$\frac{000}{200}$	$\overline{8} \underset{c}{\stackrel{n}{m}} \frac{n}{m}$	$\begin{aligned} & \underset{m}{m} \\ & \hline \end{aligned}$	$\underset{\sim}{\text { I }}$	$\frac{0}{m}$		N্ল্য়	Nి	$\stackrel{ \pm}{\oplus}$	$\underset{\sim}{c}$	$\overrightarrow{\mathrm{r}}$	\dot{m}	\vec{m}	$\stackrel{\rightharpoonup}{m}$		$\frac{n}{m}$
它	コココ	\pm	9	\bigcirc	\propto	9	$\stackrel{\bigcirc}{3}$	J	$\underset{\sim}{7}$	$\stackrel{9}{3}$	\pm				θ

Fig. 1 Black morph of Apis cerana indica

Fig. 2 Yellow morph of Apis cerana indica

Fig. 3 Common brown morph of Apis cerana indica
strength in colonies from all the locations was same during August and September. Highest mean bee strength (5.624) was observed in colonies from L11 followed by L9 (5.335) and L18 (5.333) during October which was on par with that of black bees from L6 (5.249) and L3 (5.083). Bees from L1 showed the least mean bee strength (3.750). There was a gradual increase in bee strength in September and reach a high level in November. Black bee colonies from L3 and L6 had mean bee strength of 6.537 and 6.525 respectively during November which were on par with those of yellow bee colonies from L11 and L18 (6.496 and 6.133 respectively) compared to common brown bees from other locations. During the month of December highest mean strength was observed in black bees from L3 (5.175) which was significantly higher than that of bee colonies from other locations.

Bee strength was highest (7.021) in black bee colonies from L3 followed by L11 (5.837) and L18 (5.658) during January and least was in brown bees from L1 (2.966).The second peak in bee strength was observed during February. Mean bee strength was highest in black bee colonies from L3 and L6 (7.452 and 5.624 respectively) and in yellow bees from L18 and L11 (6.911 and 6.568 respectively) which were on par and significantly higher than brown bees. Same trend was observed during March also. The black bees (L3, L6) and yellow bees (L11, L18) recorded highest mean bee strength $(7.123,5.220,6.272,6.244$ respectively) which were on par with that of L2, L6,L7, L9, L13,L14,L15,L16. During April mean bee strength declined in all the colonies and black bees from L3 recorded the highest (6.104) which was on par with that of yellow bees from L11 and L18 (5.540 and 5.344 respectively). Bees from all other locations recorded significantly lower bee strength.

The mean strength decreased again during May and highest bee strength (5.782) was
observed in black bee colonies from L6 which was on par with that of yellow bees from L11 and black bees from L3, L6. During June also the black bees from L3 and L6 showed highest bee strength (6.073 and 6.011) which was on par with that of yellow bees from L18 and L11 ($5.339,5.252$ respectively). Same trend was noticed during July also with highest bee strength of 7.010 in L3 followed by L6. Least mean bee strength was observed in common brown bees from L12.

b. Brood area (cm^{2})

The black bees from L3 had the highest mean brood area ($553.167 \mathrm{~cm}^{2}$) during September (Table 3) which was significantly higher than other colonies and it was followed by black bees from L6 ($438.833 \mathrm{~cm}^{2}$), yellow bees from L18 ($438.165 \mathrm{~cm}^{2}$) and L11 ($429.833 \mathrm{~cm}^{2}$). The lowest brood area was recorded in common brown bees from L1 ($233.335 \mathrm{~cm}^{2}$). During October, highest mean brood area was recorded in black bees from L3 $\left(912.665 \mathrm{~cm}^{2}\right)$ which was on par with that of black bees from L6 $\left(830.165 \mathrm{~cm}^{2}\right)$ which were statistically higher to other locations. Mean brood area in yellow bee colonies from L18 ($729.500 \mathrm{~cm}^{2}$) and L11 ($726.167 \mathrm{~cm}^{2}$) were on par. Least brood development was observed in colonies from L1 ($395.166 \mathrm{~cm}^{2}$). The black bees from L3 recorded the highest mean brood area ($1260.084 \mathrm{~cm}^{2}$) during November which was on par with that of black bees from L6 $\left(1165.000 \mathrm{~cm}^{2}\right)$. Mean brood area in yellow bee colonies from L11 ($1035.751 \mathrm{~cm}^{2)}$ was on par with that of bees from L6. Common bees from L12 showed the lowest brood area ($562.000 \mathrm{~cm}^{2}$) during this period. During December, maximum mean brood area of $879.417 \mathrm{~cm}^{2}$ was recorded in black bee colonies from L3 which was on par with that of yellow bees from L18 ($704.666 \mathrm{~cm}^{2}$) and were statistically higher to bees of other locations. It was followed by the yellow bees from location 11 ($630.085 \mathrm{~cm}^{2}$), common bees from L4 ($559.083 \mathrm{~cm}^{2}$) and black bees from location $6\left(539.250 \mathrm{~cm}^{2}\right)$. The common bees from location 10 showed the least brood development ($281.750 \mathrm{~cm}^{2}$).

Maximum mean brood area was recorded in black bee colonies from L3 during January (1438.417 cm^{2}) which was statistically significant from bees of other locations. It was followed by the yellow bees from L18 and 11which were on par ($979.917 \mathrm{~cm}^{2}$ and $841.667 \mathrm{~cm}^{2}$ respectively). Least mean brood area of $335.250 \mathrm{~cm}^{2}$ was recorded in common bees from L8. During February, also the black bees from L3 recorded highest mean brood area $\left(1666.667 \mathrm{~cm}^{2}\right)$ which was on par with that of yellow bees from L18 (1240.250 cm^{2}) followed by bees from L11 and L6 which were also on par ($1189.309 \mathrm{~cm}^{2}, 1134.122 \mathrm{~cm}^{2}$). Lowest brood area was recorded in bees from location 8 ($396.634 \mathrm{~cm}^{2}$). All the colonies from other locations recorded comparatively less brood area. Highest mean brood area ($1587.145 \mathrm{~cm}^{2}$) was recorded in black bees from L3 during March which was significantly higher. Yellow bees from L18 recorded a mean brood area of $1186.867 \mathrm{~cm}^{2}$ followed by bees from L11 and L6 $\left(1098.167 \mathrm{~cm}^{2}, 1021.312 \mathrm{~cm}^{2}\right)$ which were on par. Lowest brood area was recorded in bees from L8 ($322.013 \mathrm{~cm}^{2}$).

During April mean brood area declined in all the colonies and black bees from L3 recorded the highest brood area $\left(1066.145 \mathrm{~cm}^{2}\right)$ which was on par with that of yellow bees from L6, L18 and L11 ($998.634 \mathrm{~cm}^{2}, 986.938 \mathrm{~cm}^{2}, 877.966 \mathrm{~cm}^{2}$ respectively). The least mean brood area (288.516
Table 3. Monthly variation in brood area (cm^{2}) of Apis cerana indica colonies

cm^{2}) was recorded in bees from L8. Brood area decreased again during May and highest brood area ($719.083 \mathrm{~cm}^{2}$) was observed in yellow bee colonies from L 18 which was on par with that of black bees from L3 $\left(693.250 \mathrm{~cm}^{2}\right)$ and $\mathrm{L} 6\left(527.500 \mathrm{~cm}^{2}\right.$. Common bees from L1 recorded the least brood area ($174.416 \mathrm{~cm}^{2}$). During June, black bees from L3 ($1079.833 \mathrm{~cm}^{2}$) and yellow bees from L18 ($924.085 \mathrm{~cm}^{2}$) recorded highest brood area which were on par. Same trend was noticed during July also with a highest mean brood area of $1540.750 \mathrm{~cm}^{2}$ in L3 followed by L18 ($1105.167 \mathrm{~cm}^{2}$) followed by L11 ($1039.917 \mathrm{~cm}^{2}$). Least mean brood area ($233.083 \mathrm{~cm}^{2}$) was observed in common brown bees from L1.

c. Pollen storage area $\left(\mathrm{cm}^{2}\right)$

Pollen storage area in different colonies did not show significant variation from August to November and March to July (Table 4). During December, the yellow bees from L11 and L18 showed highest mean pollen storage area $\left(107.749 \mathrm{~cm}^{2}, 103.167 \mathrm{~cm}^{2}\right.$ respectively) which was on par with those of bees from L16, L13, L14, L17 and the colonies from L8 showed the lowest pollen collection ($49.333 \mathrm{~cm}^{2}$). During January, yellow bees from L11 and L18 had highest mean pollen area ($166.000 \mathrm{~cm}^{2}, 164.916 \mathrm{~cm}^{2}$) which was on par with L16, L13, L14 and L15.and bees from L1 showed the least pollen collection ($53.749 \mathrm{~cm}^{2}$). During the month of February the brown bees from L15 showed high mean pollen storage area $\left(114.185 \mathrm{~cm}^{2}\right)$ which was on par with that of L14, L16, L13, L9, L6 and L18 and the colonies from L7 recorded least pollen storage area ($38.873 \mathrm{~cm}^{2}$).

d. Honey storage area (cm^{2})

The results obtained on the honey storage area are presented in Table 5. Mean honey storage area was highest in colonies from L18 and L10 ($283.166 \mathrm{~cm}^{2}$ and $265.500 \mathrm{~cm}^{2}$ respectively) during September which were on par with that of L13, L11, L9, L6 and L8. All other colonies showed less honey storage area and the bees from L4 recorded the least ($115.667 \mathrm{~cm}^{2}$). Honey storage in yellow bee colonies from L11, black bee colonies from L6, yellow colonies from L18 and brown bees from L8 ($377.165 \mathrm{~cm}^{2}, 366.165 \mathrm{~cm}^{2}, 361.665 \mathrm{~cm}^{2}, 361.333 \mathrm{~cm}^{2}$ respectively) were on par during October followed by bees from location 10, 13, 9, 3,5. The least honey storage ($197.333 \mathrm{~cm}^{2}$) was observed from bee colonies of L16. Highest mean area of honey storage ($349.333 \mathrm{~cm}^{2}$) was recorded in yellow bees from L18 during November, which was on par with that of L6, L11, L3, L9, L4 and L13. Least honey storage was observed in colonies from location $12\left(125.333 \mathrm{~cm}^{2}\right)$ which was significantly low from all other bee colonies. No significant difference observed in honey storage area during December. The highest mean honey storage ($326.417 \mathrm{~cm}^{2}$) was observed in yellow bee colonies from L18 followed by the black bees from L3 ($320.583 \mathrm{~cm}^{2}$). Least mean storage of $133.167 \mathrm{~cm}^{2}$ was observed in colonies from L12.

There was a gradual increase in honey storage area and it was highest during January to May and then there was a gradual decrease and least mean honey storage was observed during July. Black bees from L3 and L6 had a mean honey area of $446.330 \mathrm{~cm}^{2}$ and $377.750 \mathrm{~cm}^{2}$ during January which were on par with that of the yellow bees from location 11 and 18 (416.085 and
Table 4. Monthly variation in pollen storage area (cm^{2}) of Apis cerana indica colonies

Table 5.Monthly variation in honey storage area (cm^{2}) of Apis cerana indica colonies

| Locati-
 ons | Aug. | Sept. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Pooled
 mean |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L1 | 125.235 | 164.333 | 214.665 | 208.333 | 143.499 | 174.833 | 174.960 | 181.152 | 203.551 | 226.583 | 150.333 | 112.000 | 160.037 |
| L2 | 148.330 | 155.835 | 226.500 | 233.915 | 224.500 | 270.083 | 301.224 | 328.344 | 364.277 | 282.766 | 254.417 | 174.335 | 228.194 |
| L3 | 156.245 | 163.167 | 279.666 | 300.417 | 320.583 | 446.330 | 486.706 | 488.666 | 489.150 | 540.083 | 431.250 | 351.582 | 342.834 |
| L4 | 97.867 | 115.667 | 213.500 | 260.083 | 227.750 | 231.583 | 254.408 | 262.110 | 280.647 | 287.083 | 229.166 | 177.000 | 203.143 |
| L5 | 135.454 | 185.666 | 253.667 | 247.749 | 230.835 | 217.165 | 233.175 | 245.355 | 295.868 | 266.333 | 206.915 | 162.500 | 206.591 |
| L6 | 202.536 | 227.335 | 366.165 | 337.335 | 274.916 | 377.750 | 421.934 | 429.694 | 432.544 | 574.916 | 411.910 | 312.416 | 336.573 |
| L7 | 148.399 | 187.333 | 249.500 | 225.416 | 265.000 | 342.916 | 370.866 | 378.222 | 379.312 | 211.335 | 181.166 | 144.167 | 237.741 |
| L8 | 197.064 | 202.167 | 361.333 | 216.165 | 177.165 | 221.083 | 239.836 | 245.890 | 247.331 | 123.833 | 103.165 | 92.750 | 187.368 |
| L9 | 201.470 | 235.500 | 315.167 | 288.166 | 213.167 | 285.250 | 301.679 | 317.226 | 381.626 | 170.916 | 135.500 | 119.165 | 228.756 |
| L10 | 240.355 | 265.500 | 323.666 | 225.165 | 192.333 | 251.583 | 283.329 | 288.454 | 289.251 | 117.500 | 86.915 | 88.583 | 204.818 |
| L11 | 197.225 | 236.335 | 377.165 | 323.916 | 274.000 | 416.085 | 449.946 | 476.997 | 496.450 | 214.916 | 162.666 | 122.083 | 289.237 |
| L12 | 160.777 | 168.667 | 203.000 | 125.333 | 144.665 | 165.335 | 173.892 | 171.695 | 179.595 | 141.999 | 116.749 | 96.999 | 143.131 |
| L13 | 210.385 | 250.166 | 318.166 | 253.917 | 258.417 | 350.417 | 345.080 | 355.288 | 322.297 | 261.000 | 179.750 | 130.495 | 249.875 |
| L14 | 145.750 | 169.000 | 225.165 | 231.749 | 238.834 | 301.667 | 283.456 | 296.224 | 304.251 | 215.749 | 166.245 | 127.583 | 209.205 |
| L15 | 132.258 | 134.500 | 219.000 | 245.500 | 232.333 | 273.916 | 309.253 | 347.625 | 354.514 | 249.165 | 163.665 | 126.833 | 215.658 |
| L16 | 114.275 | 152.000 | 197.333 | 208.335 | 213.000 | 274.583 | 295.045 | 297.147 | 299.225 | 282.416 | 189.750 | 140.665 | 206.136 |
| L17 | 165.000 | 150.500 | 236.500 | 240.000 | 250.665 | 284.500 | 296.394 | 299.256 | 303.666 | 169.083 | 112.916 | 72.083 | 199.812 |
| L18 | 195.274 | 283.166 | 361.665 | 349.333 | 326.417 | 496.917 | 669.339 | 688.346 | 687.291 | 438.333 | 352.833 | 256.249 | 394.089 |
| CD | 73.146 | 85.059 | 132.009 | 90.426 | NS | 205.69 | 225.74 | 207.35 | 217.48 | 130.878 | 105.731 | 83.9197 | |

$496.917 \mathrm{~cm}^{2}$). Yellow bees from L18 showed the highest mean honey storage area from February to April ($669.339,688.346,687.291 \mathrm{~cm}^{2}$ respectively) which were on par with that of black bees from L3. Highest honey storage area (574.916 and $540.083 \mathrm{~cm}^{2}$) was recorded in black bees from L6 and L3 during May. Comparatively low honey area was observed in colonies with common brown bees than the black and yellow bees.

Table 6. Honey yield (kg) in Apis cerana indica colonies collected from different locations of Kerala during honey flow season 2013

Location	Mean honey yield $(\mathbf{k g})$	Location	Mean honey yield/ colony (kg)
L1	6.416	L10	5.916
L2	11.016	L11	20.642
L3	17.858	L12	7.292
L4	7.833	L13	10.500
L5	6.800	L14	10.408
L6	17.000	L15	7.833
L7	9.958	L16	6.559
L8	6.200	L17	4.708
L9	9.458	L18	18.183

CD 5.6376
Average honey yield (Table 6) was also more in yellow bee colonies from L11 (20.642 kg), L18 $(18.183 \mathrm{~kg})$ and black bees from L3 and L6 $(17.858 \mathrm{~kg}$ and 17.00 kg$)$ and the yield in all were on par. The honey yield in common brown bees ranged from $4.708 \mathrm{~kg}-11.016 \mathrm{~kg}$ only.

e. Disease incidence and absconding behavior

The observations on incidence of disease and absconding/desertion of colonies are presented in Table 7. The results showed that no colonies absconded during August 2012 while during next month (September) one colony from L13 absconded. During October one colony each from L5 and L14 absconded due to disease. In November, 2012 one colony each from L1, L8 and L10 and two colonies from L12 absconded. One colony each from L1, L6, L8 and L10 absconded during December, while the desertion from L6 was not due to disease infection. One colony from L5 and L15 absconded during February and one colony from L12 during March. One colony from L6 absconded in April and it was not due to disease. In May three colonies absconded one each from locations L2, L3 and L16. During next month four colonies absconded one each from L3, L6, L8 and L17. During July one colony absconded from L15. From L3 and L6, three colonies each absconded and none of them had any disease infection, whereas from L5, two colonies absconded due to disease, one during February 2013 and the other during July 2013. Maximum number (5) of colonies absconded during November followed by December and June (4 nos. each) and minimum during March, April and July and September
Table 7. Disease incidence and absconding of A. cerana indica colonies (No.)

Locations	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	No. of colonies absconded
L1	-	-	-	D/A (1)	D/A (1)	-	-	-	-	-	-	-	2
12	-	-	-	-	-	-	-	-	-	D/A (1)	-	-	1
L3	-	-	-	-	-	A (1)	-	-	-	A(1)	A(1)	-	3
L4	-	-	-	-	-	-	-	-	-	-	-	-	0
L5	-	-	D/A (1)	-	-	-	D/A (1)	-	-	-	-	-	2
L6	-	-	-	-	A (1)	-	-	-	A(1)	-	A (1)	-	3
L7	-	-	-	-	-	-	-	-	-	-	-	-	0
L8	-	-	-	D/A (1)	D/A (1)	-	-	-	-	-	D/A (1)	-	3
L9	-	-	-	-	-	-	-	-	-	-	-	-	0
L10	-	-	-	D/A (1)	D/A (1)	-	-	-	-	-	-	-	2
L11	-	-	-	-	-	-	-			-	-	-	0
L12	-	-	-	D/A (2)	-	-	-	D/A (1)		-	-	-	3
L13	-	D/A (1)	-	-	-	-	-	-	-	-	-	-	1
L14	-	-	D/A (1)	-	-	-	-	-	-	-	-	-	1
L15	-	-	-	-	-	-	D/A (1)	-	-	-	-	D/A (1)	2
L16	-	-	-	-	-	-	-	-	-	D/A (1)	-	-	1
L17	-	-	-	-	-	D/A (2)	-	-	-	-	D/A (1)	-	3
L18	-		-	-	-	-	-	-	-	-	-	-	0
Total	0	1	2	5	4	3	2	1	1	3	3	1	

D/A - Diseased and absconded, A - Absconded due to some other reason, () Number of colonies absconded
(one colony each). The results showed that three black bee colonies each from L3 and L6 absconded and none of them had any disease infection and no yellow bee colonies absconded from L11 and L18.

DISCUSSION

The black and yellow morphs of A. cerana indica is being reported from Kerala for the first time. Oldroyd et al. (2000) reported that A. cerana population in Karnataka is composed of two distinct colour morphs: the yellow 'plain' morph and the black 'hill' morph. Later, Banakar (2009) reported that the black 'hill' morph is distributed in Uttara Kannada, Udupi, Dakshina Kannada, Shimoga, Kodagu, parts of Dharwad, Belgaum, Mysore and Chamarajanagar districts. Shruthi et al., 2009 also studied the behavioural traits of two colour morphs from Karnataka. Eventhough, Devanesan (1998) reported four ecotypes of A. cerana indica, from Kerala, based on multivariate analysis of 50 morphometric characters, black and yellow morphs were not observed.

The comparative performance on economically important desirable characters of A. cerana indica colonies selected from different locations showed that yellow bees and black bees were significantly superior in all the characters including honey production compared to common brown bees.

Maximum bee strength was recorded in black bees and yellow bees compared to common brown bees. This agreed with the report of Shruthi et al., (2009) who reported that in Karnataka, bee population in both black and yellow strain colonies of A. cerana indica were more and among the strains, black strain colony recorded higher bee population compared to yellow strain colony. Brood area was also higher in both black bees and yellow bees compared to brown bees. Banakar, 2009 reported that brood area in both yellow and black colour morphs was not significantly varying and both colour morphs performed equally exhibiting similar brood growth in Karnataka.

In pollen collection the black and yellow bees do not show significant superiority over the brown bees. It agrees with the report of Banakar, 2009 who revealed that comparative performance of pollen gathering activity in terms of pollen area in colonies of both yellow and black colour morphs exhibited no significant difference. Both the colour morphs performed in similar way in increasing the pollen store area. While Shruthi et al., 2009 reported that the black strain showed better performance than yellow strain in pollen storage under Karnataka conditions. This variation may be due to climatic conditions and flora available in the states.

Both yellow and black morphs recorded higher honey storage area than the common brown bees but among the morphs it was high in yellow bees compared to black bees. Similar results were reported by Banakar (2009) from Karnataka. Shruthi et al. (2009) reported that black strain and yellow strain of A. cerana indica colonies under Shivamogga, Karnataka conditions, both strains stored higher amount of honey and among the strains, black strain recorded more
honey stores compared to yellow strain. These differences observed may be due to variation in genetic character, in bee flora, climatic conditions of different states. In the present study, average honey yield was seen very high in yellow bee and black bee colonies compared to common brown bees.

The black bees and yellow bees had more tolerance/ immunity against diseases compared to common bees. Devanesan (2006) reported that all the ecotypes of A. cerana in Kerala are susceptible to TSBV. Amritha et al., 2012 reported a new disease incidence from A. cerana colonies in Kerala during 2011. No absconding behavior recorded in yellow bees while it was more in black and common bees. The study suggest that the black and yellow morphs with desirable characters can be utilized for selective breeding for production of better performing colonies for commercial beekeeping and enhanced honey production in Kerala.

ACKNOWLEDGEMENT

The first author gratefully acknowledges Shri. R.S. Gopakumar, bee breeder for helping to manage the colonies in the apiary for the studies. This study forms a part of the Ph. D research work entitled "Production of tolerant strain of Indian honey bee A. cerana indica F. through selective breeding and queen rearing technique" of the first author.

REFERENCES

Amritha V.S., Premila K.S., Rasmi C.R., Shailaja K.K. and Devanesan S. (2012) Occurrence and spread of new bacterial disease in Indian honey bee Apis cerana indica in Kerala. Journal of Pest Management in Horticultural ecosystems, 17(1): 165.
Banakar N. (2009) Comparative studies on the performance of yellow and black colour morphs of Apis cerana indica F. at Sirsi, Karnataka. M.Sc. Thesis, University of Agricultural Sciences, Dharwad, p162.
Chhuneja P.K. (2006a) Comparative evaluation of germplasm (races/strains) of honey bees for higher productivity, documentation of performances. Document prepared for Project Co-ordinator of All India Co-ordinated Project on Honey bee Research and Training, June 2007, p.4.
Chhuneja P.K. (2006b) Protocol for stock improvement in Apis mellifera L- methodology for bee breeding for stock improvement and mass production of quality queen bees. Document prepared for Project Co-ordinator of All India Co-ordinated Project on Honey bee Research and Training, June 2007, p.1.
Devanesan S. (1998) Pathogenicity of Thai Sacbrood virus to the ecotypes of Apis cerana indica Fab. in Kerala. Ph D Thesis submitted to Kerala Agricultural University, p 140.
Devanesan, S. 2006 Thai Sacbrood virus disease of honey bees. Published by All India Co-ordinated Project on Honey bee Research and Training (ICAR), College of Agriculture, Vellayani. pp 16.
Oldroyd B. P., Reddy M. S., Chapman N. C., Thompson G. J. and Beekman M. (2000) Evidence for reproductive isolation between two colour morphs of cavity nesting honey bees Apis in south India. Insectes Sociaux, 53(4): 428-434
Shruthi S.D., Ramachandra Y.L. and Sujan Ganapathi P. S. (2009) Studies on behavioural traits of two different strains of Indian honey bee Apis cerana Indica F. World Applied Science Journal, 7 (6): 797-801 (ISSN 1818-4952).

Taha E.A. (2007) Importance of banana Musa sp. (Musaceae) for honey bee Apis mellifera L. (Hymenoptera : Apidae) in Egypt. Proceedings of 2 ${ }^{\text {nd }}$ International Conference Soc., 1: 125133.

Verma L.R. (1994) A framework for research and development on beekeeping with Asian hive bee Apis cerana. Honey bee Science, 15:19-24.
Verma S K. (1998) Pollen collection and brood rearing activities of Apis cerana indica F. in Jeolikote, UP: Indian Bee Journal, 50(1): 26-28.

