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Screening of wild Ipomoea genotypes for resistance against
sweet potato weevil Cylas formicarius F. based on multiple
choice bioassay and phytochemical constituents
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ABSTRACT: Screening of wild Ipomoea spp. and identification of new sources of resistance to the sweet
potato weevil (Cylas formicarius Fabricius) with I. palmata, I. mauritiana, I. obscura, I. triloba were
carried out. The leaves, vines and tubers of the different Ipomoea sp. were screened using multiple choice
bioassay. The insect feeding holes on I. mauritiana leaves (1.67+1.528), vines (7.67±2.96) and tubers
(12.67+2.309) was significantly less compared with other Ipomoea sp. Further, the two-choice bioassay
was done, using I. batatas and I. mauritiana for comparison. Based on the morphological screening
different phytochemical constituents was identified using GC-MS analysis of the methanolic extract of
roots of selected Ipomoea spp. (I. mauritiana, I. palmata and I. batatas). The results indicated that the
phytochemical constituent of I. mauritiana viz., undecane, quinic acid which is to have insecticidal
activity. The major constituent of I. batatas comprises of melezitose (38.53%) and alpha-I-rhamnopyranose
(21.26%). It can be concluded that the phytochemical constituents of I. mauritiana was responsible for
the antibiosis.  © 2023 Association for Advancement of Entomology
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INTRODUCTION

The weevil Cylas formicarius F.  belonging to
Coleoptera, Brentidae, is a destructive pest of
sweet potato and is widely spread throughout the
tropical regions of the world, but the methods of
control are the significant problem faced by
growers in most countries producing sweet potato.
Generally, weevils cause severe feeding destruction

to sweet potato roots, vines, stems and leaves
through their life cycle, beginning from the egg stage
to adult stage. Weevil infested tubers are bitter due
to the production of a terpene compound and the
infested tubers are unfit for consumption or convert
to livestock, resulting major economic losses
(Uritaini et al.,1975; Palaniswami and Mohandas,
1993; Korada et al., 2010a; Kyereko et al., 2019).
Although C. formicarius prefers sweet potato,
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more than 30 species of Ipomoea and other genera
have been recorded as its host plants (Sutherland,
1986; McConnell and Hossner, 1991). About 500-
600 species were included in the genus Ipomoea
sp. within the Family Convolvulaceae (Austin and
Huáman, 1996).  Studies have proved that the
management sweet potato weevil (SPW) can be
done by integrated pest management viz., removal
and destruction of hosts, cultural methods, biological
control, botanicals, chemical pesticides, tolerant
varieties and use of semiochemicals (Palaniswami
et al., 1992; Pillai et al., 1993; Palaniswami and
Chattopadhyay, 2006; Korada et al., 2010a).

Earlier studies on the identification of the resistant
sweet potato genotypes to the weevil indicated only
relatively tolerant ones. Studies conducted at
AVRDC and Penghu Island has reported screening
of the population I. trifida x I. batatas hybrids with
high yield and low weevil infestation (Talekar, 1987).
An indigenous cultivar Selopia was identified
moderately resistant to the weevil by screening
based on crown damage grade index (DGI),
percentage tuber damage, tuber DGI, adult emerged
per kg infested tuber (Palaniswami and Mohandas
1992). Korada et al. (2010b) reported that among
the sweet potato genotypes, viz., Goutam, Sourin,
Gouri and CIP-6 evaluated for SPW resistance,
CIP-6 was the most susceptible. Further in their
electroantennogram studies identified the
electrophysiological response of female antenna to
the volatile extracts of aerial plant parts and roots
was higher than the male antenna of the weevil. In
olfactometer studies, the headspace volatiles of
genotype CIP-6 attracted more number of female
C. formicarius weevils than volatiles of Gouri,
Goutam and Sourin. Variation in the preference of
sweet potato genotypes to C. formicarius is
attributed to differential emission of volatiles from
the aerial parts and roots. Reddy et al. (2015)
reported that the weevil, developed faster on
Ipomoea batatas than on I. triloba.

Anyanga et al. (2013) found that hydroxycinnamic
acid esters on the exterior and the root latex,
decreases weevil’s nourishment and oviposition
providing resistance to SPW. Okada et al. (2019)

identified genetic regions associated with weevil
resistance in 90IDN-47 and PSL sweet potato
genotypes by genome wide association studies
(GWAS) in Japan. In their experiment on the degree
of weevil damage to the genotypes, no single
nucleotide polymorphisms (SNPs) were identified
above the significance thresholds. However, one
relatively high peak was found in the 90IDN-47
genotype, which showed resistance to weevils. On
the other hand, one relatively high peak was also
detected in the PSL genotype, which showed
susceptibility to weevils. These results suggest that
two regions could affect weevil resistance and may
contain the gene(s) controlling weevil resistance.
SPW can survive on average longer than four
months on sweet potato as well as I. triloba (Reddy
and Chi, 2015). Hence identification of host plant
resistance source against weevil is one of the
alternative strategies for the pest management. In
the present study, genotypes from different species
of Ipomoea were selected based on the reports
(Reddy and Chi, 2015) on host preference by
weevils and experiments were conducted to screen
wild Ipomoea spp. for resistance against weevil
based on the nature of feeding by sweet potato
weevils and their phytochemical constituents.

MATERIALS  AND  METHODS

Multiple choice bioassay: Multiple choice
bioassays (Vos and Jander, 2008)  were carried out
using leaves, vines and roots of plant species viz
Ipomoea batatas, I. mauritiana, I. palmata, I.
obscura and  I.triloba  Five plant samples were
placed in large Petridish (180x30mm) and 20
weevils (@1male: 5females) were released  in  the
centre of the Petridish. The sweet potato weevils
were reared in Entomology laboratory and were
used for bioassay. The position and readings of
feeding holes by weevils (cumulative values) were
recorded for three consecutive days. Experiment
using leaves, vines and roots were conducted
separately in three replications and each experiment
was repeated thrice. Control samples (leaves, vines,
roots) for each experiment were kept separately.

Two - choice bioassay: No-choice bioassays (Vos
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and Jander 2008) were carried out using fresh
leaves, vines and roots of sweet potato and I.
mauritiana. The plant samples were placed in large
Petridish (180x30mm) and 18 sweet potato weevils
(1male: 5 females) were introduced to the centre
of the Petridish. The sweet potato weevils were
reared in Entomology laboratory and were used for
bioassay. The position and readings of feeding holes
by weevils (cumulative values) were recorded for
three consecutive days. Experiment using leaves,
vines and roots were conducted separately in three
replications and each experiment was repeated
thrice. Control samples (leaves, vines, roots) for
each experiment were kept separately.

Data were subjected to analysis of variance using
IBM SPSS version 21.The differences between the
treatments was measured by tuckeys test at P_0.05,
and the treatment means were compared using the
least significant difference at 5 per cent. Data for
no choice assay were subjected to t-test at P_0.05.

Gas chromatography-Mass spectrum analysis:
Further for GC-MS analysis one tuberous wild
I. mauritiana, one non-tuberous wild I. palmata
and I. batatas were selected for the anlaysis. The
required quantity of the whole plant tubers/roots
was washed, air dried and weighed. It was
transferred to a flask, treated with methanol of
500ml until the tubers was fully immersed,
incubated overnight and filtered through a
Whatmann No. 41 filter paper. Before filtering, the
filter paper along was wetted with methanol. The
filtrate is then concentrated to 5 ml using flash
evaporator. The GC-MS analysis was done at
Sophisticated Analytical Instruments Facility
(SAIF), IIT, Chennai. GC-MS analysis of the
methanol extract was performed using an Agilent-
Technologies 8890 Network GC system equipped
with an Agilent-Technologies 5977 mass selective
detector (Agilent-Technologies, Little Falls, CA,
USA). For MS detection, the electron ionization
mode with ionization energy of 70 eV was used,
with a mass range at m/z 50–600. An HP-5MS
capillary column (30 m × 250 ìm, film thickness
0.25 ìm) was used for GC/MS. The column
temperature was programmed from 180 to 300 °C

at a rate of 5 °C/min with the lower and upper
temperature being held for 3 and 5 min, respectively.
GC was performed in the split mode. Helium was
used as carrier gas at a flow rate of 1.2 ml/min. An
injection 1 μl was used for each diluted extract.
Essential compounds were identified by their
retention times and mass fragmentation patterns
using data of standards at NIST library

RESULTS  AND  DISCUSSION

Multiple choice bioassay: The weevil feeding
holes on I. mauritiana was significantly less
compared with I. batatas, I. triloba. I. palmata
and I. obscura. The insect feeding holes on I.
mauritiana leaves (1.67+1.52) was significantly
low, when compared tpother Ipomoea species
(Table 1). Similarly the same pattern was observed
for the three consecutive days and mortality of
insects was also observed. The insect feeding holes
on I. mauritiana vines was less (7.67±2.96),
compared to other Ipomoea species. The same
pattern was observed for the three consecutive days
given (Table 2). The insect feeding holes on I.
mauritiana tubers was significantly low (12.67 ±
2.30), when compared to other Ipomoea species
(Table 3).

Two-choice bio-assay: The weevil feeding holes
on leaf, vines and tubers of I. mauritiana and I. batatas
indicated great variation between them. I. mauritiana
showed resistance to the weevil (Table 4).

Table 1. Leaf feeding (no. of holes) by the weevils on
Ipomoea species in multiple choice bioassay

Species 1st Day 2nd Day 3rd Day

I. mauritiana 1.67± 1.52a 4.67±1.15a 7.33±0.57a

I. triloba 4.00± 1.00a 7.00± 1.00a 9.67± 0.57a

I. palmata 10.00 ± 2.64b 15.33± 2.30b 18.33± 2.88b

I. obscura 10.33± 2.08b 14.67± 0.57b 17.67±1.155b

I. batatas 7.20± 4.10b 17.00± 1.73b 19.00± 1.00b

Mean values (mean+standard p_0.05) represent error of
feeding holes (cumulative) by sweet potato weevil on different
Ipomoea sp. leaves
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Table 2. Vine feeding (no. of holes) by the weevils on
Ipomoea species in the multiple choice bioassay

Species 1st Day 2nd Day 3rd Day

I. mauritiana 7.67± 2.96ab 10.56± 3.37ab 14.89± 2.14b

I. triloba 4.22 ± 0.50b 9.56 ± 1.38b 12.00 ± 1.19b

I. palmata 12.67 ±3.18 a 18.00 ±3.46 a 26.44±1.01a

I. obscura 8.78 ± 1.50ab 14.22± 3.65ab 16.44 ± 2.14b

I. batatas 11.22± 1.16a 17.78± 2.41a 24.22± 2.79a

Mean values (mean+standard, p_0.05) represent the feeding
holes (cumulative) by sweet potato weevil on different
Ipomoea sp vines

Table 3. Tuber feeding (no. of holes) by the weevils on
Ipomoea species in the multiple choice bioassay

Species 1st Day 2nd Day 3rd Day

I. mauritiana 12.67  ± 2.30a 22.67± 6.02a 30.33 ± 2.51a

I. triloba 10.67 ± 3.05a 22.67 ± 8.73a 34.33± 4.93a

I. palmata 12.00 ± 0.00a 26.67± 10.40a 31.33± 5.50a

I. obscura 12.67 ± 1.15a 27.33± 3.51a 30.67 ± 3.21a

I. batatas 19.00 ± 2.64b 31.00± 1.00a 37.33± 2.08a

Mean values (mean+standard, p_0.05) represent the feeding
holes (cumulative) by sweet potato weevil on different
Ipomoea sp roots

Table 4. Weevil feeding (no. of holes) on Ipomoea
species in the two choice bioassay

Species 1st Day 2nd Day 3rd Day

Leaves

I. mauritiana 5.67±2.51 8.67±1.15 13.00±1.00

I. batatas 16.00±2.00 18.33±1.52 26.67±2.88

Vines

I. mauritiana 11.00±1.00 13.00±1.73 14.67±2.51

I. batatas 16.33±0.57 19.00±2.64 25.67±1.15

Tubers

I. mauritiana 6.33±0.57 12.33±2.51 17.67±1.52

I. batatas 28.33±7.63 35.00±5.00 43.00±4.58

Mean values (mean+standard, p_0.05) represent the feeding
holes (cumulative) by the weevil

Gas chromatography-Mass spectrum analysis:

In all the multiple choice as well as two choice
bioassay the feeding of weevils was significantly
less in I. mauritiana which may be due to the
presence of various phytochemical constituents.
This shows the non-preference of the weevils
always depends on the nature of host plant. GC-
MS analysis of methanol extract of samples
revealed phytochemical compounds, its retention
time (RT) and peak area (%). The bioactivity of
the identified compounds reported are presented
along with its reference (Table 5). The
phytochemical constituent of I. mauritiana include
compounds undecane and quinic acid which are
reported to have insecticidal activity whereas
sucrose reported to enhance insecticidal activity.
The most prevailing compounds identified in I.
mauritiana were sucrose (77.01%), quinic acid
(20.93%) whereas in I. batatas they were
melezitose (38.53%) and alpha-I-rhamnopyranose
(21.26%).

Higher levels of octadecyl and hexadecyl esters of
hydroxycinnamic acids were identified in the root
surface and root latex of sub-saharan sweetpotato
variety, New Kawogo, contributing resistance to
sweet potato weevil (Stevenson et al., 2009).
Anyanga et al. (2013) reported that the these
compounds in high concentrations on root surfaces
was strongly associated with resistance against adult
oviposition and feeding. They reduce the
development of sweet potato weevil larvae and
suggested that differences in the concentration of
these compounds between varieties explain
differences in resistance. Among the five Ipomoea
species the weevil infestation was significantly less
in I. mauritiana. Phytochemical screening of
methanolic extract revealed the presence of various
compounds which are reported to have insecticidal
activity. These components might be responsible
for the low weevil infestation in I. mauritiana.
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Table 5: List of the phytochemical compounds detected from the methanol extract of Ipomoea species through
GC–MS analysis

No R/T Peak % Compound Bioactivity Reference

I. mauritiana

1. 6.15 2.06 Undecane Constituent of Baky et al., 2021
    Ludwigia stolonifera

2. 14.08 77.01 Sucrose Insecticide activity Ezhilan and
Neelamegam, 2012

3. 17.97 20.93 Quinic acid Insecticidal activity Li et al., 2021

I. batatas

1. 5.68 3.48 D-Alanine, N-proparglyoxy Constituent of Suluvoy and  Grace
carbonyl-decyl ester Averrhoa bilimbi et al., 2017

2. 6.85 2.26 DL-Arabinose Antimicrobial activity Mohammed et al., 2018

3. 6.92 2.04 2-Deoxy-2-fluoro-1,6-anhydro  Constituent of Kamal et al., 2015
-β-d-glucopyranose Alternaria alternata

4. 7.13 2.03 4H-Pyran-4-one,2,3-dihydro- Antifungal activity Teoh and Don, 2015
3,5-dihydroxy-6-methyl

5. 9.07 3.28 5-Hydroxymethylfurfural Insecticidal activity Chuang et al., 2018

6. 9.66 7.03 5-O-Methyl-d-gluconic Antimicrobial, antioxidant Kazi and Gude, 2022
acid dimethylamide

7. 10.24 2.19 Octanamide, N- Secondary metabolite Kadhim et al., 2017
(2-mercaptoethyl) of Vitis vinifera

8. 12.40 2.77 Methyl 4-nitrohexanoate Constituent of Vasuki et al., 2022
Hugonia mystax

9. 14.60 38.53 Melezitose Insecticidal activity Gore and Schal et al., 2004

10. 18.45 4.04 Desulphosinigrin Antibacterial activity Olajuyigbe et al., 2018

11. 26.38 1.97 1H-Benzocyclohepten-7-ol, Floral volatile constituents Sharma et al., 2018
2,3,,4,4a, 5,6,7,8-octahydro-1,1,4a of Crataeva religiosa

12. 27.04 1.83 Spiro[4,5]decan-7-one,1,8 Anti-inflammatory Subin and Jagathy 2017
-dimethyl-8,9-epoxy-4-isopropyl

13. 28.22 0.74 Santamarine Natural antioxidant with Oh et al., 2021
anti-photoaging

I. palmata

14. 6.48 1.28 Maltol Mosquito larvicidal activity Rajamanikyam et al., 2017

15. 9.41 1.28 4-Methylmannitol Constituent of  khat leaves Alsanosy  et al., 2020

16. 10.53 1.77 2H-Pyran-2-onetetrahy Fatty acid composition of Manimaran et al., 2020
dro-6-propyl- Trichosanthes cucumerina

bio-oil

Screening of wild Ipomoea genotypes for resistance against sweet potato weevil Cylas formicarius
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