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Effects of sublethal concentration of Imidacloprid
on the enzyme activity of sweet potato weevil,
Cylas formicarius (Fabricius) (Coleoptera, Brentidae)
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ABSTRACT:  Application of sublethal (LC10 and LC30) dose of Imidacloprid on sweet potato weevil was
found to have inhibitory effect on its enzymes viz., glutathione reductase (GR), glutathione peroxidase
(GPx), reduced glutathione (GSH) and glutathione S-transferase (GST), while activity of superoxide
dismutase (SOD) and lipid peroxidase (LPx) was up regulated when compared to control. The weevil’s
expression of SOD increased by 13.53 and 69.44 and LPx by 67.38 and 73.04 per cent respectively, when the
sublethal dose was raised from LC10 to LC30.  Although GST and GPX did not alter considerably after
exposure to the sublethal doses of imidacloprid, weevil activity of GR (65.5-78.1%) and GSH (42.2 and
61.6%) decreased significantly. © 2024 Association for Advancement of Entomology
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INTRODUCTION

Sweet potato, (Ipomoea batatas), as it is grown
by subsistence farmers, is known as the “poor
man’s crop”, and it is ranked as the seventh largest
food crop in the world after wheat, rice, maize,
potato, barely and cassava (Narayan et al., 2022).
Cultivation of sweet potato is prevalent in all most
the states of India; however, majority of the nation’s
supply is from Odisha, Kerala, West Bengal, and
Uttar Pradesh (Palaniswami et al., 1991; Prakash
et al., 2020). Sweet potato weevil (SPW), Cylas
formicarius (Fabricius) (Coleoptera, Brentidae), is
considered to be the deadliest insect pest, inflicting
significant damage to sweet potato tubers that can

occasionally reach 100 per cent (Palaniswami and
Chattopadhyay, 2005; Prasad et al., 2022). Grub
of SPW excavates tunnels and feeds, while the adult
feeds petioles and leaves. Chemical pesticides have
historically been used to suppress SPW
(Palaniswami and Mohandas, 1996; Zhang et al.,
2013). When the neonicotinoid imidacloprid comes
in contact with an insect pest, its central nervous
system is damaged and its nicotinic acetylcholine
receptors are disturbed (Jeschke et al., 2011; Le
Goff and Giraudo, 2019). According to Elbert et
al. (2008) Imidacloprid has a systemic action that
helps to a variety of piercing-sucking insect pests,
chewing pests, and soil-dwelling arthropods.
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Neonicotinoid pesticides impact the lifespan, feeding
activity, larval duration, reproduction, and activity
of the detoxifying enzymes of exposed insects at
sublethal doses (Tan et al., 2012; De Franca et al.,
2017). Insects may occasionally develop resistance
to insecticides when subjected to sublethal
concentrations of these chemicals. Sublethal doses
of insecticides have an impact on the activity of
detoxifying enzyme in a variety of insects (Jing et
al., 2011; He et al., 2013; Lu et al., 2016);
nevertheless, the literature review did not yield the
same as in the case of C. formicarius. The current
work ascertains that the sublethal exposure of
imidacloprid to SPW activates several enzymes,
including super oxide dismutase, lipid peroxidase,
but reduces the activity of glutathione peroxidase,
glutathione reductase, glutathione S-transferase and
reduced glutathione.

MATERIALS  AND  METHODS

Sweet potato tubers infected with SPW collected
from the markets and fields of the ICAR-Central
Tuber Crops Research Institute (CTCRI),
Thiruvananthapuram were stored in one-litre plastic
containers. Muslin cloth was used to cover the
container’s mouth. The container was filled with
newspaper scraps to absorb the water that was
released by tubers. As the adults emerged, they
were collected, and their culture was maintained
on fresh tubers (at 32°C and 75% RH).

Imidacloprid was diluted to five different
concentrations 0.0001, 0.0005, 0.001, 0.005, 0.01,
0.05, 0.1 and 0.5 per cent in ordinary water. Using
a micro applicator, 50µl of the aliquot was topically
delivered to each of the 20 adults of 2-week-old.
Three replications were kept for each treatment.
In the control group, Imidacloprid was replaced with
water. Mortality of the weevil was observed 24
hours after treatment (HAT), and LC10, LC30 and
LC50 were calculated using Probit regression
analysis (Finney, 1971).

Assessment of enzyme activities:The activity
of six detoxifying enzymes viz, superoxide
dismutase (SOD), lipid peroxidase (LP), glutathione
reductase (GR), glutathione peroxidase (Gpx),

reduced glutathione (GSH) and glutathione S-
transferase (GST) were identified for the current
investigation.

SOD The activity of SOD was assayed by the
procedure adopted by Misra and Fridovich (1977).

LPx assay is based on the reaction of
Malondialdehyde (MDA) with of Thiobarbituric
acid (TBA) forming an MDA-TBA adducts
(Ohkawa et al., 1979).

GR was assayed by the procedure adopted by
David and Richard (1983).

GPx catalyses the oxidation of reduced glutathione
(GSH) to oxidized form which reacts with
Nicotinamide Adenine Dinucleotide Phosphate
(NADPH) and gets converted to NADP and two
molecules of reduced glutathione which is measured
by spectrophotometer at 340 nm (Wendel, 1980).

GSH was estimated as described by Moron et al.
(1979).

The activity of GST in treated test insects were
assayed by the procedure adopted from Mannervik
(1985).

The total protein content of the SPW estimated by
Lowry’s method (Lowry et al., 1951) using bovine
serum albumin (Sigma) as a standard.

Data were subjected to analysis of variance
(ANOVA) using SPSS version 17. The mean values
of data were tested with Fisher’s Least Significant
Difference (LSD) multiple comparison tests were
performed to assess the significance of Imidacloprid
effects on enzyme activity (P<0.05).

RESULTS  AND  DISCUSSION

Bioassay and determination of sublethal
concentrations: Mortality of adult SPW increased
with an increase in the concentration of
imidacloprid. Exposure at lethal and sublethal doses
revealed the LC50 to be 0.001 ml L-1, whereas the
LC10 and LC30 were 0.0001 and 0.0006 ml L-1,
respectively; and these concentrations were used
for further studies.
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Effect of sublethal concentrations on enzyme
activity: Adult SPW showed a substantial
(P<0.001) variation in SOD activity between the
treatment and control batches following the sublethal
doses of imidacloprid administration. The SOD
activity of SPW dramatically increased from its
control value of 16.62±0.03 to 18.39±0.20 and
28.16±0.47, respectively, after being treated with
imidacloprid at LC10 and LC30 (Fig. 1a). Sublethal
concentrations of imidacloprid significantly
(P<0.001) up regulated the activity of lipid
peroxidation in SPW (Fig.1b). The MDA unit in
the untreated batches of SPW was recorded to be
75.40±0.90 mg-1protein, but it significantly increased
to 231.21±0.70 and 279.7±0.8 mg-1protein in the
treatments of LC10 and LC30 of imidacloprid.
Activity of the GPx in SPW was found significantly
(P<0.001) varied in the treatment with imidacloprid
(Fig.1c). The enzyme mg-1protein in the untreated
SPW was 1.56±0.04, whereas it decreased to
0.29±0.01 and 0.14±0.01, respectively in the
treatments with LC10 and LC30 concentrations of
imidacloprid. The activity of GR was estimated by
assessing the amount of NADPH utilized by the
enzyme to produce reduced glutathione. The
oxidation of NADPH in the untreated SPW was
1.89±0.10µmoles mg-1protein, whereas it was
significantly decreased to 0.37±0.03 in LC10 and
0.45±0.02µmoles in LC30 concentrations of
imidacloprid; however, this variation was
statistically not significant (P<0.001) (Fig.1d). A
decrease in the GST’s detoxifying activity was
observed in SPW when treated with sublethal
concentration of Imidacloprid than the control
(Fig.1e). In the case of untreated batch of SPW,
the enzyme activity was 3.25±0.01 mg-1 protein,
whereas it was 0.18±0.01 and 0.17±0.01,
respectively when treated with LC10 and LC30. The
GSH level was significantly (P<0.001) decreased
in the treated insects (Fig.1f). In the case of
untreated SPW the level of GSH was 654.67±0.36
units mg-1protein and it was 480.56±0.38 and
145.07±0.54, respectively when treated with LC10
and LC30 concentration.

Insects are exposed to a variety of xenobiotic toxins
throughout their lives; some are made by plants in
their natural condition, such as allelochemicals, while

others take in the form of insecticides. In spite of
this, insects have developed a wide range of
detoxification strategies to fight the natural poisons.
In some circumstances, the same mechanisms help
insects resist insecticides; although the extent and
type of processes vary significantly. Understanding
detoxification enables one to decipher agricultural
plants’ chemical defence mechanisms and to
choose more effective insecticides. Detoxifying
enzymes play a vital role in the insect resistance
mechanisms, and a variation in their activities can
be seen during insecticide metabolism (Feng et al.,
2018; Jin et al., 2019). Reactive oxygen species
(ROS), which are produced when synthetic
insecticides are applied, can cause oxidative stress
in insect cells. SODs are ubiquitous enzymes that
serve as an organism’s first line of defence against
oxygen free radicals. According to Yamamoto and
Yamaguchi (2022) SOD can shield healthy cells
from ROS and eliminate superoxide radicals (O2)
through the process of dismutation to oxygen and
hydrogen peroxide. Imidacloprid treatment at the
two sublethal concentrations enhanced the activity
of SOD of SPW (13.53 and 69.44%, respectively),
when compared to the control. The increased rate
of SOD indicates the detoxification of imidacloprid
in SPW by removing the superoxide radicals (O2 -)
through the process of dismutation to oxygen and
hydrogen peroxide. An increased level of SOD is
an indicative of SPW’s attempt to respond to an
oxidative stress condition. Elevations of SOD due
to the exposure of imidacloprid in different species
have already been reported in insects as well as
mammals. These were reports by  El Gendy et al.
(2010) in male mice, Kapoor et al. (2010) in rat,
Sun et al. (2015) in Coloana cinerea, Yang et al.
(2015) in Harmonia axyridis, Zhu et al. (2015) in
Aphidius gifuensis, Wang et al. (2016) in
Ambrostoma quadriimopressum and Balieira et
al. (2018) in  Apis mellifera. Whereas some studies
show the inhibitory effect of imidacloprid stress in
some insects. Zhou et al. (2017) noted a down
regulation in SOD level in Aphidius gifuensis and
Zhang et al. (2020) in Frankliniella
occidentalis and F. intonsa when treated with
Imidacloprid. Kolawole et al. (2014) explained this
was due to the limited efficiency of SOD in some
species to scavenge the accumulated O2 radicals

Effects of sublethal concentration of Imidacloprid on the enzyme activity of sweet potato weevil
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in cell on prolonged treatment of insecticides.

Increased lipid peroxidation is a sign of the oxidative
breakdown of cell membrane lipids, which results
in cell damage under pesticide stress. According to
Gawel et al.  (2004) the presence of
malondialdehyde (MDA) is a sign of LPO and,
subsequently, oxidative stress. Imidacloprid
exposure caused the lipid peroxidation rate in SPW
to increase it by 3.3 and 5.4 times, respectively,
compared to untreated batches. El-Gendy et al.
(2010), Kapoor et al. (2010), Bal et al. (2012),
Balieira et al. (2018), and Ndonwi et al. (2019)
reported that imidacloprid treatment increases the
concentration of MDA in various animal tissues.
Gauthier et al. (2018) found that imidacloprid and
thiamethoxam treatment increased lipid
peroxidation in susceptible Apis mellifera. The
presence of a significant amount of LPO in the
treated SPW tissue indicated that the metabolism
of imidacloprid resulted in the production of

oxidative metabolites or free radicals, which may
have the potential to cause progressive chain
reactions. Lipid peroxidation has a pivotal role to
determine the longevity of insects, when it rises
above the critical level, it may culminate into the
death of the insect; however, if it falls below the
threshold level, the insect may live longer (Gawel
et al., 2004).

GSH and GPx support cellular defence by
eliminating membrane phospholipid hydroperoxides.
Members of the glutathione peroxidase (GPx)
family play a critical role in antioxidant defense by
converting organic hydroperoxides and/or hydrogen
peroxide to water and/or their corresponding
alcohols (Masella et al., 2005). The current
investigation revealed that GPx, a crucial
mechanism of pesticide resistance, dropped to
between 81 and 91 per cent when SPW was
subjected to sublethal doses of imidacloprid, which

Fig. 1 Activities of detoxifying enzymes a- SOD, b- LPx, c- GPx, d- GR, e- GST, f- GSH
in Cylas formicarius on the exposure to sublethal concentrations of imidacloprid
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shows that GPx has a negative tolerance or resistant
to imidacloprid. Contrary to the current findings,
exposure to imidacloprid results in oxidative stress
and resistance in a variety of different species, such
as honeybees (Apis mellifera), rats, and mice (El-
Gendy et al., 2010). Che-Mendoza et al. (2009)
reported an increase in the tolerance of mosquitoes
against pyrethroids through an elevation in the
expression of GPx. Bamidele et al. (2017)
evaluated the metabolic defence mechanism by
administering dichlorvos to African palm weevil
larvae (Rynchophorus phoenicis Fabricius) found
a significant increase in GPx activity.

The glutathione system, GR removes hydrogen
peroxide and organic hydroperoxides such as lipid
hydroperoxides on pesticide exposure (Maheshwari
et al., 2011). After receiving the sublethal dosages
of imidacloprid, the GR of SPW was found
decreased. The decrease in enzyme activity shows
that SPW is vulnerable to imidacloprid. At sublethal
dosages of imidacloprid, GR activity in SPW
decreased (by 65.5 and 78.1%), indicating that it is
less active than the control. Bamidele et al. (2017)
observed that the activity of GR decreased in
response to an increase in the concentration of
dichlorvos used to treat R. phoenicis larvae.
According to Karadag (2019) imidacloprid and
thiamethoxam doses ranging from 25 to 500mg L-1

had no discernible impact on the GR enzyme
activities in baker’s yeast, Saccharomyces
cerevisiae.

Glutathione S-transferases (GSTs) are
multifunctional enzymes that are responsible for the
metabolism and detoxification of both xenobiotic
and physiological substances. GSTs can metabolize
insecticides by facilitating their reductive
dehydrochlorination or by conjugation reactions
with reduced glutathione to produce water-soluble
metabolites that are simpler to excrete (Hernandez
et al., 2018). Imidacloprid treatment at sublethal
quantities resulted in GST activity on SPW being
94% lower than control ie, the enzyme activity was
dropped from 3.25±0.01 mg-1protein, to 0.18±0.01
and 0.17±0.01, respectively when treated with LC10
and LC30 concentrations. As GSTs play a crucial
role in the insecticide resistance, high levels of GSTs

are typically observed in insects that are resistant
to pesticides (Perini et al., 2021). Shojaei et al.
(2017) reported the reduction of GST activity in
Tribolium castaneum (Herbst) after the treatment
with essential oil isolated from Artemisia
dracunculus. Several reports show an increased
level of GST in insects on the exposure to sublethal
concentrations of imidacloprid, this include Sitobion
avenae (Fabricius) and Rhopalosiphum padi
(Linnaeus) (Lu et al., 2016) and Nilaparvata
lugens (Yang et al., 2020). A high level of GST in
the resistant strains of Culex pipiens treated with
organochlorine, organophosphate, and pyrethroids
was reported by Mustafa and Ek (2015).  According
to the current study, GSH levels were found
decreased by 42.2 and 61.6 per cent in SPW when
it was given sublethal dosages of imidacloprid at
LC10 and LC30, respectively. Kapoor et al. (2010)
ascertained that imidacloprid has produced a
significant reduction in the GSH level in female rats.
Pyrethroid exposure to a Nilaparvata lugens
colony in a lab decreased the glutathione and caused
an oxidative stress (Vontas et al., 2001). The
current study reports that treatment with sublethal
concentrations of imidacloprid caused significant
impairment in the antioxidant enzyme system of
SPW. The activity of SOD and LPx, increased in
the treated batches of sweet potato weevil, whereas
it reduced as in the case of GPx, GST, GR and
GSH. Increased sublethal concentrations of
imidacloprid exhibits more oxidative stress in SPW
due to the over expression of SOD and LPx, while
glutathione related enzymes were down regulated.
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